D7net
Home
Console
Upload
information
Create File
Create Folder
About
Tools
:
/
proc
/
self
/
root
/
proc
/
thread-self
/
root
/
lib64
/
python2.7
/
site-packages
/
OpenSSL
/
test
/
Filename :
test_ssl.py
back
Copy
# Copyright (C) Jean-Paul Calderone # See LICENSE for details. """ Unit tests for L{OpenSSL.SSL}. """ from gc import collect from errno import ECONNREFUSED, EINPROGRESS, EWOULDBLOCK from sys import platform, version_info from socket import error, socket from os import makedirs from os.path import join from unittest import main from weakref import ref from OpenSSL.crypto import TYPE_RSA, FILETYPE_PEM from OpenSSL.crypto import PKey, X509, X509Extension from OpenSSL.crypto import dump_privatekey, load_privatekey from OpenSSL.crypto import dump_certificate, load_certificate from OpenSSL.SSL import OPENSSL_VERSION_NUMBER, SSLEAY_VERSION, SSLEAY_CFLAGS from OpenSSL.SSL import SSLEAY_PLATFORM, SSLEAY_DIR, SSLEAY_BUILT_ON from OpenSSL.SSL import SENT_SHUTDOWN, RECEIVED_SHUTDOWN from OpenSSL.SSL import SSLv2_METHOD, SSLv3_METHOD, SSLv23_METHOD, TLSv1_METHOD from OpenSSL.SSL import OP_NO_SSLv2, OP_NO_SSLv3, OP_SINGLE_DH_USE from OpenSSL.SSL import ( VERIFY_PEER, VERIFY_FAIL_IF_NO_PEER_CERT, VERIFY_CLIENT_ONCE, VERIFY_NONE) from OpenSSL.SSL import ( Error, SysCallError, WantReadError, ZeroReturnError, SSLeay_version) from OpenSSL.SSL import Context, ContextType, Connection, ConnectionType from OpenSSL.test.util import TestCase, bytes, b from OpenSSL.test.test_crypto import ( cleartextCertificatePEM, cleartextPrivateKeyPEM) from OpenSSL.test.test_crypto import ( client_cert_pem, client_key_pem, server_cert_pem, server_key_pem, root_cert_pem) try: from OpenSSL.SSL import OP_NO_QUERY_MTU except ImportError: OP_NO_QUERY_MTU = None try: from OpenSSL.SSL import OP_COOKIE_EXCHANGE except ImportError: OP_COOKIE_EXCHANGE = None try: from OpenSSL.SSL import OP_NO_TICKET except ImportError: OP_NO_TICKET = None from OpenSSL.SSL import ( SSL_ST_CONNECT, SSL_ST_ACCEPT, SSL_ST_MASK, SSL_ST_INIT, SSL_ST_BEFORE, SSL_ST_OK, SSL_ST_RENEGOTIATE, SSL_CB_LOOP, SSL_CB_EXIT, SSL_CB_READ, SSL_CB_WRITE, SSL_CB_ALERT, SSL_CB_READ_ALERT, SSL_CB_WRITE_ALERT, SSL_CB_ACCEPT_LOOP, SSL_CB_ACCEPT_EXIT, SSL_CB_CONNECT_LOOP, SSL_CB_CONNECT_EXIT, SSL_CB_HANDSHAKE_START, SSL_CB_HANDSHAKE_DONE) # openssl dhparam 128 -out dh-128.pem (note that 128 is a small number of bits # to use) dhparam = """\ -----BEGIN DH PARAMETERS----- MBYCEQCobsg29c9WZP/54oAPcwiDAgEC -----END DH PARAMETERS----- """ def verify_cb(conn, cert, errnum, depth, ok): return ok def socket_pair(): """ Establish and return a pair of network sockets connected to each other. """ # Connect a pair of sockets port = socket() port.bind(('', 0)) port.listen(1) client = socket() client.setblocking(False) client.connect_ex(("127.0.0.1", port.getsockname()[1])) client.setblocking(True) server = port.accept()[0] # Let's pass some unencrypted data to make sure our socket connection is # fine. Just one byte, so we don't have to worry about buffers getting # filled up or fragmentation. server.send(b("x")) assert client.recv(1024) == b("x") client.send(b("y")) assert server.recv(1024) == b("y") # Most of our callers want non-blocking sockets, make it easy for them. server.setblocking(False) client.setblocking(False) return (server, client) def handshake(client, server): conns = [client, server] while conns: for conn in conns: try: conn.do_handshake() except WantReadError: pass else: conns.remove(conn) def _create_certificate_chain(): """ Construct and return a chain of certificates. 1. A new self-signed certificate authority certificate (cacert) 2. A new intermediate certificate signed by cacert (icert) 3. A new server certificate signed by icert (scert) """ caext = X509Extension(b('basicConstraints'), False, b('CA:true')) # Step 1 cakey = PKey() cakey.generate_key(TYPE_RSA, 512) cacert = X509() cacert.get_subject().commonName = "Authority Certificate" cacert.set_issuer(cacert.get_subject()) cacert.set_pubkey(cakey) cacert.set_notBefore(b("20000101000000Z")) cacert.set_notAfter(b("20200101000000Z")) cacert.add_extensions([caext]) cacert.set_serial_number(0) cacert.sign(cakey, "sha1") # Step 2 ikey = PKey() ikey.generate_key(TYPE_RSA, 512) icert = X509() icert.get_subject().commonName = "Intermediate Certificate" icert.set_issuer(cacert.get_subject()) icert.set_pubkey(ikey) icert.set_notBefore(b("20000101000000Z")) icert.set_notAfter(b("20200101000000Z")) icert.add_extensions([caext]) icert.set_serial_number(0) icert.sign(cakey, "sha1") # Step 3 skey = PKey() skey.generate_key(TYPE_RSA, 512) scert = X509() scert.get_subject().commonName = "Server Certificate" scert.set_issuer(icert.get_subject()) scert.set_pubkey(skey) scert.set_notBefore(b("20000101000000Z")) scert.set_notAfter(b("20200101000000Z")) scert.add_extensions([ X509Extension(b('basicConstraints'), True, b('CA:false'))]) scert.set_serial_number(0) scert.sign(ikey, "sha1") return [(cakey, cacert), (ikey, icert), (skey, scert)] class _LoopbackMixin: """ Helper mixin which defines methods for creating a connected socket pair and for forcing two connected SSL sockets to talk to each other via memory BIOs. """ def _loopback(self): (server, client) = socket_pair() ctx = Context(TLSv1_METHOD) ctx.use_privatekey(load_privatekey(FILETYPE_PEM, server_key_pem)) ctx.use_certificate(load_certificate(FILETYPE_PEM, server_cert_pem)) server = Connection(ctx, server) server.set_accept_state() client = Connection(Context(TLSv1_METHOD), client) client.set_connect_state() handshake(client, server) server.setblocking(True) client.setblocking(True) return server, client def _interactInMemory(self, client_conn, server_conn): """ Try to read application bytes from each of the two L{Connection} objects. Copy bytes back and forth between their send/receive buffers for as long as there is anything to copy. When there is nothing more to copy, return C{None}. If one of them actually manages to deliver some application bytes, return a two-tuple of the connection from which the bytes were read and the bytes themselves. """ wrote = True while wrote: # Loop until neither side has anything to say wrote = False # Copy stuff from each side's send buffer to the other side's # receive buffer. for (read, write) in [(client_conn, server_conn), (server_conn, client_conn)]: # Give the side a chance to generate some more bytes, or # succeed. try: data = read.recv(2 ** 16) except WantReadError: # It didn't succeed, so we'll hope it generated some # output. pass else: # It did succeed, so we'll stop now and let the caller deal # with it. return (read, data) while True: # Keep copying as long as there's more stuff there. try: dirty = read.bio_read(4096) except WantReadError: # Okay, nothing more waiting to be sent. Stop # processing this send buffer. break else: # Keep track of the fact that someone generated some # output. wrote = True write.bio_write(dirty) class VersionTests(TestCase): """ Tests for version information exposed by L{OpenSSL.SSL.SSLeay_version} and L{OpenSSL.SSL.OPENSSL_VERSION_NUMBER}. """ def test_OPENSSL_VERSION_NUMBER(self): """ L{OPENSSL_VERSION_NUMBER} is an integer with status in the low byte and the patch, fix, minor, and major versions in the nibbles above that. """ self.assertTrue(isinstance(OPENSSL_VERSION_NUMBER, int)) def test_SSLeay_version(self): """ L{SSLeay_version} takes a version type indicator and returns one of a number of version strings based on that indicator. """ versions = {} for t in [SSLEAY_VERSION, SSLEAY_CFLAGS, SSLEAY_BUILT_ON, SSLEAY_PLATFORM, SSLEAY_DIR]: version = SSLeay_version(t) versions[version] = t self.assertTrue(isinstance(version, bytes)) self.assertEqual(len(versions), 5) class ContextTests(TestCase, _LoopbackMixin): """ Unit tests for L{OpenSSL.SSL.Context}. """ def test_method(self): """ L{Context} can be instantiated with one of L{SSLv2_METHOD}, L{SSLv3_METHOD}, L{SSLv23_METHOD}, or L{TLSv1_METHOD}. """ for meth in [SSLv3_METHOD, SSLv23_METHOD, TLSv1_METHOD]: Context(meth) try: Context(SSLv2_METHOD) except (ValueError, Error): # Some versions of OpenSSL have SSLv2, some don't. # Difficult to say in advance. pass self.assertRaises(TypeError, Context, "") self.assertRaises(ValueError, Context, 10) def test_type(self): """ L{Context} and L{ContextType} refer to the same type object and can be used to create instances of that type. """ self.assertIdentical(Context, ContextType) self.assertConsistentType(Context, 'Context', TLSv1_METHOD) def test_use_privatekey(self): """ L{Context.use_privatekey} takes an L{OpenSSL.crypto.PKey} instance. """ key = PKey() key.generate_key(TYPE_RSA, 128) ctx = Context(TLSv1_METHOD) ctx.use_privatekey(key) self.assertRaises(TypeError, ctx.use_privatekey, "") def test_set_app_data_wrong_args(self): """ L{Context.set_app_data} raises L{TypeError} if called with other than one argument. """ context = Context(TLSv1_METHOD) self.assertRaises(TypeError, context.set_app_data) self.assertRaises(TypeError, context.set_app_data, None, None) def test_get_app_data_wrong_args(self): """ L{Context.get_app_data} raises L{TypeError} if called with any arguments. """ context = Context(TLSv1_METHOD) self.assertRaises(TypeError, context.get_app_data, None) def test_app_data(self): """ L{Context.set_app_data} stores an object for later retrieval using L{Context.get_app_data}. """ app_data = object() context = Context(TLSv1_METHOD) context.set_app_data(app_data) self.assertIdentical(context.get_app_data(), app_data) def test_set_options_wrong_args(self): """ L{Context.set_options} raises L{TypeError} if called with the wrong number of arguments or a non-C{int} argument. """ context = Context(TLSv1_METHOD) self.assertRaises(TypeError, context.set_options) self.assertRaises(TypeError, context.set_options, None) self.assertRaises(TypeError, context.set_options, 1, None) def test_set_timeout_wrong_args(self): """ L{Context.set_timeout} raises L{TypeError} if called with the wrong number of arguments or a non-C{int} argument. """ context = Context(TLSv1_METHOD) self.assertRaises(TypeError, context.set_timeout) self.assertRaises(TypeError, context.set_timeout, None) self.assertRaises(TypeError, context.set_timeout, 1, None) def test_get_timeout_wrong_args(self): """ L{Context.get_timeout} raises L{TypeError} if called with any arguments. """ context = Context(TLSv1_METHOD) self.assertRaises(TypeError, context.get_timeout, None) def test_timeout(self): """ L{Context.set_timeout} sets the session timeout for all connections created using the context object. L{Context.get_timeout} retrieves this value. """ context = Context(TLSv1_METHOD) context.set_timeout(1234) self.assertEquals(context.get_timeout(), 1234) def test_set_verify_depth_wrong_args(self): """ L{Context.set_verify_depth} raises L{TypeError} if called with the wrong number of arguments or a non-C{int} argument. """ context = Context(TLSv1_METHOD) self.assertRaises(TypeError, context.set_verify_depth) self.assertRaises(TypeError, context.set_verify_depth, None) self.assertRaises(TypeError, context.set_verify_depth, 1, None) def test_get_verify_depth_wrong_args(self): """ L{Context.get_verify_depth} raises L{TypeError} if called with any arguments. """ context = Context(TLSv1_METHOD) self.assertRaises(TypeError, context.get_verify_depth, None) def test_verify_depth(self): """ L{Context.set_verify_depth} sets the number of certificates in a chain to follow before giving up. The value can be retrieved with L{Context.get_verify_depth}. """ context = Context(TLSv1_METHOD) context.set_verify_depth(11) self.assertEquals(context.get_verify_depth(), 11) def _write_encrypted_pem(self, passphrase): """ Write a new private key out to a new file, encrypted using the given passphrase. Return the path to the new file. """ key = PKey() key.generate_key(TYPE_RSA, 128) pemFile = self.mktemp() fObj = open(pemFile, 'w') pem = dump_privatekey(FILETYPE_PEM, key, "blowfish", passphrase) fObj.write(pem.decode('ascii')) fObj.close() return pemFile def test_set_passwd_cb_wrong_args(self): """ L{Context.set_passwd_cb} raises L{TypeError} if called with the wrong arguments or with a non-callable first argument. """ context = Context(TLSv1_METHOD) self.assertRaises(TypeError, context.set_passwd_cb) self.assertRaises(TypeError, context.set_passwd_cb, None) self.assertRaises(TypeError, context.set_passwd_cb, lambda: None, None, None) def test_set_passwd_cb(self): """ L{Context.set_passwd_cb} accepts a callable which will be invoked when a private key is loaded from an encrypted PEM. """ passphrase = b("foobar") pemFile = self._write_encrypted_pem(passphrase) calledWith = [] def passphraseCallback(maxlen, verify, extra): calledWith.append((maxlen, verify, extra)) return passphrase context = Context(TLSv1_METHOD) context.set_passwd_cb(passphraseCallback) context.use_privatekey_file(pemFile) self.assertTrue(len(calledWith), 1) self.assertTrue(isinstance(calledWith[0][0], int)) self.assertTrue(isinstance(calledWith[0][1], int)) self.assertEqual(calledWith[0][2], None) def test_passwd_callback_exception(self): """ L{Context.use_privatekey_file} propagates any exception raised by the passphrase callback. """ pemFile = self._write_encrypted_pem(b("monkeys are nice")) def passphraseCallback(maxlen, verify, extra): raise RuntimeError("Sorry, I am a fail.") context = Context(TLSv1_METHOD) context.set_passwd_cb(passphraseCallback) self.assertRaises(RuntimeError, context.use_privatekey_file, pemFile) def test_passwd_callback_false(self): """ L{Context.use_privatekey_file} raises L{OpenSSL.SSL.Error} if the passphrase callback returns a false value. """ pemFile = self._write_encrypted_pem(b("monkeys are nice")) def passphraseCallback(maxlen, verify, extra): return None context = Context(TLSv1_METHOD) context.set_passwd_cb(passphraseCallback) self.assertRaises(Error, context.use_privatekey_file, pemFile) def test_passwd_callback_non_string(self): """ L{Context.use_privatekey_file} raises L{OpenSSL.SSL.Error} if the passphrase callback returns a true non-string value. """ pemFile = self._write_encrypted_pem(b("monkeys are nice")) def passphraseCallback(maxlen, verify, extra): return 10 context = Context(TLSv1_METHOD) context.set_passwd_cb(passphraseCallback) self.assertRaises(Error, context.use_privatekey_file, pemFile) def test_passwd_callback_too_long(self): """ If the passphrase returned by the passphrase callback returns a string longer than the indicated maximum length, it is truncated. """ # A priori knowledge! passphrase = b("x") * 1024 pemFile = self._write_encrypted_pem(passphrase) def passphraseCallback(maxlen, verify, extra): assert maxlen == 1024 return passphrase + b("y") context = Context(TLSv1_METHOD) context.set_passwd_cb(passphraseCallback) # This shall succeed because the truncated result is the correct # passphrase. context.use_privatekey_file(pemFile) def test_set_info_callback(self): """ L{Context.set_info_callback} accepts a callable which will be invoked when certain information about an SSL connection is available. """ (server, client) = socket_pair() clientSSL = Connection(Context(TLSv1_METHOD), client) clientSSL.set_connect_state() called = [] def info(conn, where, ret): called.append((conn, where, ret)) context = Context(TLSv1_METHOD) context.set_info_callback(info) context.use_certificate( load_certificate(FILETYPE_PEM, cleartextCertificatePEM)) context.use_privatekey( load_privatekey(FILETYPE_PEM, cleartextPrivateKeyPEM)) serverSSL = Connection(context, server) serverSSL.set_accept_state() while not called: for ssl in clientSSL, serverSSL: try: ssl.do_handshake() except WantReadError: pass # Kind of lame. Just make sure it got called somehow. self.assertTrue(called) def _load_verify_locations_test(self, *args): """ Create a client context which will verify the peer certificate and call its C{load_verify_locations} method with C{*args}. Then connect it to a server and ensure that the handshake succeeds. """ (server, client) = socket_pair() clientContext = Context(TLSv1_METHOD) clientContext.load_verify_locations(*args) # Require that the server certificate verify properly or the # connection will fail. clientContext.set_verify( VERIFY_PEER, lambda conn, cert, errno, depth, preverify_ok: preverify_ok) clientSSL = Connection(clientContext, client) clientSSL.set_connect_state() serverContext = Context(TLSv1_METHOD) serverContext.use_certificate( load_certificate(FILETYPE_PEM, cleartextCertificatePEM)) serverContext.use_privatekey( load_privatekey(FILETYPE_PEM, cleartextPrivateKeyPEM)) serverSSL = Connection(serverContext, server) serverSSL.set_accept_state() # Without load_verify_locations above, the handshake # will fail: # Error: [('SSL routines', 'SSL3_GET_SERVER_CERTIFICATE', # 'certificate verify failed')] handshake(clientSSL, serverSSL) cert = clientSSL.get_peer_certificate() self.assertEqual(cert.get_subject().CN, 'Testing Root CA') def test_load_verify_file(self): """ L{Context.load_verify_locations} accepts a file name and uses the certificates within for verification purposes. """ cafile = self.mktemp() fObj = open(cafile, 'w') fObj.write(cleartextCertificatePEM.decode('ascii')) fObj.close() self._load_verify_locations_test(cafile) def test_load_verify_invalid_file(self): """ L{Context.load_verify_locations} raises L{Error} when passed a non-existent cafile. """ clientContext = Context(TLSv1_METHOD) self.assertRaises( Error, clientContext.load_verify_locations, self.mktemp()) def test_load_verify_directory(self): """ L{Context.load_verify_locations} accepts a directory name and uses the certificates within for verification purposes. """ capath = self.mktemp() makedirs(capath) # Hash values computed manually with c_rehash to avoid depending on # c_rehash in the test suite. One is from OpenSSL 0.9.8, the other # from OpenSSL 1.0.0. for name in ['c7adac82.0', 'c3705638.0']: cafile = join(capath, name) fObj = open(cafile, 'w') fObj.write(cleartextCertificatePEM.decode('ascii')) fObj.close() self._load_verify_locations_test(None, capath) def test_load_verify_locations_wrong_args(self): """ L{Context.load_verify_locations} raises L{TypeError} if called with the wrong number of arguments or with non-C{str} arguments. """ context = Context(TLSv1_METHOD) self.assertRaises(TypeError, context.load_verify_locations) self.assertRaises(TypeError, context.load_verify_locations, object()) self.assertRaises(TypeError, context.load_verify_locations, object(), object()) self.assertRaises(TypeError, context.load_verify_locations, None, None, None) if True: "set_default_verify_paths appears not to work on Windows. " "See LP#404343 and LP#404344." else: def test_set_default_verify_paths(self): """ L{Context.set_default_verify_paths} causes the platform-specific CA certificate locations to be used for verification purposes. """ # Testing this requires a server with a certificate signed by one of # the CAs in the platform CA location. Getting one of those costs # money. Fortunately (or unfortunately, depending on your # perspective), it's easy to think of a public server on the # internet which has such a certificate. Connecting to the network # in a unit test is bad, but it's the only way I can think of to # really test this. -exarkun # Arg, verisign.com doesn't speak TLSv1 context = Context(SSLv3_METHOD) context.set_default_verify_paths() context.set_verify( VERIFY_PEER, lambda conn, cert, errno, depth, preverify_ok: preverify_ok) client = socket() client.connect(('verisign.com', 443)) clientSSL = Connection(context, client) clientSSL.set_connect_state() clientSSL.do_handshake() clientSSL.send('GET / HTTP/1.0\r\n\r\n') self.assertTrue(clientSSL.recv(1024)) def test_set_default_verify_paths_signature(self): """ L{Context.set_default_verify_paths} takes no arguments and raises L{TypeError} if given any. """ context = Context(TLSv1_METHOD) self.assertRaises(TypeError, context.set_default_verify_paths, None) self.assertRaises(TypeError, context.set_default_verify_paths, 1) self.assertRaises(TypeError, context.set_default_verify_paths, "") def test_add_extra_chain_cert_invalid_cert(self): """ L{Context.add_extra_chain_cert} raises L{TypeError} if called with other than one argument or if called with an object which is not an instance of L{X509}. """ context = Context(TLSv1_METHOD) self.assertRaises(TypeError, context.add_extra_chain_cert) self.assertRaises(TypeError, context.add_extra_chain_cert, object()) self.assertRaises(TypeError, context.add_extra_chain_cert, object(), object()) def _handshake_test(self, serverContext, clientContext): """ Verify that a client and server created with the given contexts can successfully handshake and communicate. """ serverSocket, clientSocket = socket_pair() server = Connection(serverContext, serverSocket) server.set_accept_state() client = Connection(clientContext, clientSocket) client.set_connect_state() # Make them talk to each other. # self._interactInMemory(client, server) for i in range(3): for s in [client, server]: try: s.do_handshake() except WantReadError: pass def test_add_extra_chain_cert(self): """ L{Context.add_extra_chain_cert} accepts an L{X509} instance to add to the certificate chain. See L{_create_certificate_chain} for the details of the certificate chain tested. The chain is tested by starting a server with scert and connecting to it with a client which trusts cacert and requires verification to succeed. """ chain = _create_certificate_chain() [(cakey, cacert), (ikey, icert), (skey, scert)] = chain # Dump the CA certificate to a file because that's the only way to load # it as a trusted CA in the client context. for cert, name in [(cacert, 'ca.pem'), (icert, 'i.pem'), (scert, 's.pem')]: fObj = open(name, 'w') fObj.write(dump_certificate(FILETYPE_PEM, cert).decode('ascii')) fObj.close() for key, name in [(cakey, 'ca.key'), (ikey, 'i.key'), (skey, 's.key')]: fObj = open(name, 'w') fObj.write(dump_privatekey(FILETYPE_PEM, key).decode('ascii')) fObj.close() # Create the server context serverContext = Context(TLSv1_METHOD) serverContext.use_privatekey(skey) serverContext.use_certificate(scert) # The client already has cacert, we only need to give them icert. serverContext.add_extra_chain_cert(icert) # Create the client clientContext = Context(TLSv1_METHOD) clientContext.set_verify( VERIFY_PEER | VERIFY_FAIL_IF_NO_PEER_CERT, verify_cb) clientContext.load_verify_locations('ca.pem') # Try it out. self._handshake_test(serverContext, clientContext) def test_use_certificate_chain_file(self): """ L{Context.use_certificate_chain_file} reads a certificate chain from the specified file. The chain is tested by starting a server with scert and connecting to it with a client which trusts cacert and requires verification to succeed. """ chain = _create_certificate_chain() [(cakey, cacert), (ikey, icert), (skey, scert)] = chain # Write out the chain file. chainFile = self.mktemp() fObj = open(chainFile, 'w') # Most specific to least general. fObj.write(dump_certificate(FILETYPE_PEM, scert).decode('ascii')) fObj.write(dump_certificate(FILETYPE_PEM, icert).decode('ascii')) fObj.write(dump_certificate(FILETYPE_PEM, cacert).decode('ascii')) fObj.close() serverContext = Context(TLSv1_METHOD) serverContext.use_certificate_chain_file(chainFile) serverContext.use_privatekey(skey) fObj = open('ca.pem', 'w') fObj.write(dump_certificate(FILETYPE_PEM, cacert).decode('ascii')) fObj.close() clientContext = Context(TLSv1_METHOD) clientContext.set_verify( VERIFY_PEER | VERIFY_FAIL_IF_NO_PEER_CERT, verify_cb) clientContext.load_verify_locations('ca.pem') self._handshake_test(serverContext, clientContext) # XXX load_client_ca # XXX set_session_id def test_get_verify_mode_wrong_args(self): """ L{Context.get_verify_mode} raises L{TypeError} if called with any arguments. """ context = Context(TLSv1_METHOD) self.assertRaises(TypeError, context.get_verify_mode, None) def test_get_verify_mode(self): """ L{Context.get_verify_mode} returns the verify mode flags previously passed to L{Context.set_verify}. """ context = Context(TLSv1_METHOD) self.assertEquals(context.get_verify_mode(), 0) context.set_verify( VERIFY_PEER | VERIFY_CLIENT_ONCE, lambda *args: None) self.assertEquals( context.get_verify_mode(), VERIFY_PEER | VERIFY_CLIENT_ONCE) def test_load_tmp_dh_wrong_args(self): """ L{Context.load_tmp_dh} raises L{TypeError} if called with the wrong number of arguments or with a non-C{str} argument. """ context = Context(TLSv1_METHOD) self.assertRaises(TypeError, context.load_tmp_dh) self.assertRaises(TypeError, context.load_tmp_dh, "foo", None) self.assertRaises(TypeError, context.load_tmp_dh, object()) def test_load_tmp_dh_missing_file(self): """ L{Context.load_tmp_dh} raises L{OpenSSL.SSL.Error} if the specified file does not exist. """ context = Context(TLSv1_METHOD) self.assertRaises(Error, context.load_tmp_dh, "hello") def test_load_tmp_dh(self): """ L{Context.load_tmp_dh} loads Diffie-Hellman parameters from the specified file. """ context = Context(TLSv1_METHOD) dhfilename = self.mktemp() dhfile = open(dhfilename, "w") dhfile.write(dhparam) dhfile.close() context.load_tmp_dh(dhfilename) # XXX What should I assert here? -exarkun def test_set_cipher_list(self): """ L{Context.set_cipher_list} accepts a C{str} naming the ciphers which connections created with the context object will be able to choose from. """ context = Context(TLSv1_METHOD) context.set_cipher_list("hello world:AES128-SHA256") conn = Connection(context, None) self.assertEquals(conn.get_cipher_list(), ["AES128-SHA256"]) class ServerNameCallbackTests(TestCase, _LoopbackMixin): """ Tests for L{Context.set_tlsext_servername_callback} and its interaction with L{Connection}. """ def test_wrong_args(self): """ L{Context.set_tlsext_servername_callback} raises L{TypeError} if called with other than one argument. """ context = Context(TLSv1_METHOD) self.assertRaises(TypeError, context.set_tlsext_servername_callback) self.assertRaises( TypeError, context.set_tlsext_servername_callback, 1, 2) def test_old_callback_forgotten(self): """ If L{Context.set_tlsext_servername_callback} is used to specify a new callback, the one it replaces is dereferenced. """ def callback(connection): pass def replacement(connection): pass context = Context(TLSv1_METHOD) context.set_tlsext_servername_callback(callback) tracker = ref(callback) del callback context.set_tlsext_servername_callback(replacement) collect() self.assertIdentical(None, tracker()) def test_no_servername(self): """ When a client specifies no server name, the callback passed to L{Context.set_tlsext_servername_callback} is invoked and the result of L{Connection.get_servername} is C{None}. """ args = [] def servername(conn): args.append((conn, conn.get_servername())) context = Context(TLSv1_METHOD) context.set_tlsext_servername_callback(servername) # Lose our reference to it. The Context is responsible for keeping it # alive now. del servername collect() # Necessary to actually accept the connection context.use_privatekey(load_privatekey(FILETYPE_PEM, server_key_pem)) context.use_certificate(load_certificate(FILETYPE_PEM, server_cert_pem)) # Do a little connection to trigger the logic server = Connection(context, None) server.set_accept_state() client = Connection(Context(TLSv1_METHOD), None) client.set_connect_state() self._interactInMemory(server, client) self.assertEqual([(server, None)], args) def test_servername(self): """ When a client specifies a server name in its hello message, the callback passed to L{Contexts.set_tlsext_servername_callback} is invoked and the result of L{Connection.get_servername} is that server name. """ args = [] def servername(conn): args.append((conn, conn.get_servername())) context = Context(TLSv1_METHOD) context.set_tlsext_servername_callback(servername) # Necessary to actually accept the connection context.use_privatekey(load_privatekey(FILETYPE_PEM, server_key_pem)) context.use_certificate(load_certificate(FILETYPE_PEM, server_cert_pem)) # Do a little connection to trigger the logic server = Connection(context, None) server.set_accept_state() client = Connection(Context(TLSv1_METHOD), None) client.set_connect_state() client.set_tlsext_host_name(b("foo1.example.com")) self._interactInMemory(server, client) self.assertEqual([(server, b("foo1.example.com"))], args) class ConnectionTests(TestCase, _LoopbackMixin): """ Unit tests for L{OpenSSL.SSL.Connection}. """ # XXX want_write # XXX want_read # XXX get_peer_certificate -> None # XXX sock_shutdown # XXX master_key -> TypeError # XXX server_random -> TypeError # XXX state_string # XXX connect -> TypeError # XXX connect_ex -> TypeError # XXX set_connect_state -> TypeError # XXX set_accept_state -> TypeError # XXX renegotiate_pending # XXX do_handshake -> TypeError # XXX bio_read -> TypeError # XXX recv -> TypeError # XXX send -> TypeError # XXX bio_write -> TypeError def test_type(self): """ L{Connection} and L{ConnectionType} refer to the same type object and can be used to create instances of that type. """ self.assertIdentical(Connection, ConnectionType) ctx = Context(TLSv1_METHOD) self.assertConsistentType(Connection, 'Connection', ctx, None) def test_get_context(self): """ L{Connection.get_context} returns the L{Context} instance used to construct the L{Connection} instance. """ context = Context(TLSv1_METHOD) connection = Connection(context, None) self.assertIdentical(connection.get_context(), context) def test_get_context_wrong_args(self): """ L{Connection.get_context} raises L{TypeError} if called with any arguments. """ connection = Connection(Context(TLSv1_METHOD), None) self.assertRaises(TypeError, connection.get_context, None) def test_set_context_wrong_args(self): """ L{Connection.set_context} raises L{TypeError} if called with a non-L{Context} instance argument or with any number of arguments other than 1. """ ctx = Context(TLSv1_METHOD) connection = Connection(ctx, None) self.assertRaises(TypeError, connection.set_context) self.assertRaises(TypeError, connection.set_context, object()) self.assertRaises(TypeError, connection.set_context, "hello") self.assertRaises(TypeError, connection.set_context, 1) self.assertRaises(TypeError, connection.set_context, 1, 2) self.assertRaises( TypeError, connection.set_context, Context(TLSv1_METHOD), 2) self.assertIdentical(ctx, connection.get_context()) def test_set_context(self): """ L{Connection.set_context} specifies a new L{Context} instance to be used for the connection. """ original = Context(SSLv23_METHOD) replacement = Context(TLSv1_METHOD) connection = Connection(original, None) connection.set_context(replacement) self.assertIdentical(replacement, connection.get_context()) # Lose our references to the contexts, just in case the Connection isn't # properly managing its own contributions to their reference counts. del original, replacement collect() def test_set_tlsext_host_name_wrong_args(self): """ If L{Connection.set_tlsext_host_name} is called with a non-byte string argument or a byte string with an embedded NUL or other than one argument, L{TypeError} is raised. """ conn = Connection(Context(TLSv1_METHOD), None) self.assertRaises(TypeError, conn.set_tlsext_host_name) self.assertRaises(TypeError, conn.set_tlsext_host_name, object()) self.assertRaises(TypeError, conn.set_tlsext_host_name, 123, 456) self.assertRaises( TypeError, conn.set_tlsext_host_name, b("with\0null")) if version_info >= (3,): # On Python 3.x, don't accidentally implicitly convert from text. self.assertRaises( TypeError, conn.set_tlsext_host_name, b("example.com").decode("ascii")) def test_get_servername_wrong_args(self): """ L{Connection.get_servername} raises L{TypeError} if called with any arguments. """ connection = Connection(Context(TLSv1_METHOD), None) self.assertRaises(TypeError, connection.get_servername, object()) self.assertRaises(TypeError, connection.get_servername, 1) self.assertRaises(TypeError, connection.get_servername, "hello") def test_pending(self): """ L{Connection.pending} returns the number of bytes available for immediate read. """ connection = Connection(Context(TLSv1_METHOD), None) self.assertEquals(connection.pending(), 0) def test_pending_wrong_args(self): """ L{Connection.pending} raises L{TypeError} if called with any arguments. """ connection = Connection(Context(TLSv1_METHOD), None) self.assertRaises(TypeError, connection.pending, None) def test_connect_wrong_args(self): """ L{Connection.connect} raises L{TypeError} if called with a non-address argument or with the wrong number of arguments. """ connection = Connection(Context(TLSv1_METHOD), socket()) self.assertRaises(TypeError, connection.connect, None) self.assertRaises(TypeError, connection.connect) self.assertRaises(TypeError, connection.connect, ("127.0.0.1", 1), None) def test_connect_refused(self): """ L{Connection.connect} raises L{socket.error} if the underlying socket connect method raises it. """ client = socket() context = Context(TLSv1_METHOD) clientSSL = Connection(context, client) exc = self.assertRaises(error, clientSSL.connect, ("127.0.0.1", 1)) self.assertEquals(exc.args[0], ECONNREFUSED) def test_connect(self): """ L{Connection.connect} establishes a connection to the specified address. """ port = socket() port.bind(('', 0)) port.listen(3) clientSSL = Connection(Context(TLSv1_METHOD), socket()) clientSSL.connect(('127.0.0.1', port.getsockname()[1])) # XXX An assertion? Or something? if platform == "darwin": "connect_ex sometimes causes a kernel panic on OS X 10.6.4" else: def test_connect_ex(self): """ If there is a connection error, L{Connection.connect_ex} returns the errno instead of raising an exception. """ port = socket() port.bind(('', 0)) port.listen(3) clientSSL = Connection(Context(TLSv1_METHOD), socket()) clientSSL.setblocking(False) result = clientSSL.connect_ex(port.getsockname()) expected = (EINPROGRESS, EWOULDBLOCK) self.assertTrue( result in expected, "%r not in %r" % (result, expected)) def test_accept_wrong_args(self): """ L{Connection.accept} raises L{TypeError} if called with any arguments. """ connection = Connection(Context(TLSv1_METHOD), socket()) self.assertRaises(TypeError, connection.accept, None) def test_accept(self): """ L{Connection.accept} accepts a pending connection attempt and returns a tuple of a new L{Connection} (the accepted client) and the address the connection originated from. """ ctx = Context(TLSv1_METHOD) ctx.use_privatekey(load_privatekey(FILETYPE_PEM, server_key_pem)) ctx.use_certificate(load_certificate(FILETYPE_PEM, server_cert_pem)) port = socket() portSSL = Connection(ctx, port) portSSL.bind(('', 0)) portSSL.listen(3) clientSSL = Connection(Context(TLSv1_METHOD), socket()) # Calling portSSL.getsockname() here to get the server IP address sounds # great, but frequently fails on Windows. clientSSL.connect(('127.0.0.1', portSSL.getsockname()[1])) serverSSL, address = portSSL.accept() self.assertTrue(isinstance(serverSSL, Connection)) self.assertIdentical(serverSSL.get_context(), ctx) self.assertEquals(address, clientSSL.getsockname()) def test_shutdown_wrong_args(self): """ L{Connection.shutdown} raises L{TypeError} if called with the wrong number of arguments or with arguments other than integers. """ connection = Connection(Context(TLSv1_METHOD), None) self.assertRaises(TypeError, connection.shutdown, None) self.assertRaises(TypeError, connection.get_shutdown, None) self.assertRaises(TypeError, connection.set_shutdown) self.assertRaises(TypeError, connection.set_shutdown, None) self.assertRaises(TypeError, connection.set_shutdown, 0, 1) def test_shutdown(self): """ L{Connection.shutdown} performs an SSL-level connection shutdown. """ server, client = self._loopback() self.assertFalse(server.shutdown()) self.assertEquals(server.get_shutdown(), SENT_SHUTDOWN) self.assertRaises(ZeroReturnError, client.recv, 1024) self.assertEquals(client.get_shutdown(), RECEIVED_SHUTDOWN) client.shutdown() self.assertEquals(client.get_shutdown(), SENT_SHUTDOWN|RECEIVED_SHUTDOWN) self.assertRaises(ZeroReturnError, server.recv, 1024) self.assertEquals(server.get_shutdown(), SENT_SHUTDOWN|RECEIVED_SHUTDOWN) def test_set_shutdown(self): """ L{Connection.set_shutdown} sets the state of the SSL connection shutdown process. """ connection = Connection(Context(TLSv1_METHOD), socket()) connection.set_shutdown(RECEIVED_SHUTDOWN) self.assertEquals(connection.get_shutdown(), RECEIVED_SHUTDOWN) def test_app_data_wrong_args(self): """ L{Connection.set_app_data} raises L{TypeError} if called with other than one argument. L{Connection.get_app_data} raises L{TypeError} if called with any arguments. """ conn = Connection(Context(TLSv1_METHOD), None) self.assertRaises(TypeError, conn.get_app_data, None) self.assertRaises(TypeError, conn.set_app_data) self.assertRaises(TypeError, conn.set_app_data, None, None) def test_app_data(self): """ Any object can be set as app data by passing it to L{Connection.set_app_data} and later retrieved with L{Connection.get_app_data}. """ conn = Connection(Context(TLSv1_METHOD), None) app_data = object() conn.set_app_data(app_data) self.assertIdentical(conn.get_app_data(), app_data) def test_makefile(self): """ L{Connection.makefile} is not implemented and calling that method raises L{NotImplementedError}. """ conn = Connection(Context(TLSv1_METHOD), None) self.assertRaises(NotImplementedError, conn.makefile) def test_get_peer_cert_chain_wrong_args(self): """ L{Connection.get_peer_cert_chain} raises L{TypeError} if called with any arguments. """ conn = Connection(Context(TLSv1_METHOD), None) self.assertRaises(TypeError, conn.get_peer_cert_chain, 1) self.assertRaises(TypeError, conn.get_peer_cert_chain, "foo") self.assertRaises(TypeError, conn.get_peer_cert_chain, object()) self.assertRaises(TypeError, conn.get_peer_cert_chain, []) def test_get_peer_cert_chain(self): """ L{Connection.get_peer_cert_chain} returns a list of certificates which the connected server returned for the certification verification. """ chain = _create_certificate_chain() [(cakey, cacert), (ikey, icert), (skey, scert)] = chain serverContext = Context(TLSv1_METHOD) serverContext.use_privatekey(skey) serverContext.use_certificate(scert) serverContext.add_extra_chain_cert(icert) serverContext.add_extra_chain_cert(cacert) server = Connection(serverContext, None) server.set_accept_state() # Create the client clientContext = Context(TLSv1_METHOD) clientContext.set_verify(VERIFY_NONE, verify_cb) client = Connection(clientContext, None) client.set_connect_state() self._interactInMemory(client, server) chain = client.get_peer_cert_chain() self.assertEqual(len(chain), 3) self.assertEqual( "Server Certificate", chain[0].get_subject().CN) self.assertEqual( "Intermediate Certificate", chain[1].get_subject().CN) self.assertEqual( "Authority Certificate", chain[2].get_subject().CN) def test_get_peer_cert_chain_none(self): """ L{Connection.get_peer_cert_chain} returns C{None} if the peer sends no certificate chain. """ ctx = Context(TLSv1_METHOD) ctx.use_privatekey(load_privatekey(FILETYPE_PEM, server_key_pem)) ctx.use_certificate(load_certificate(FILETYPE_PEM, server_cert_pem)) server = Connection(ctx, None) server.set_accept_state() client = Connection(Context(TLSv1_METHOD), None) client.set_connect_state() self._interactInMemory(client, server) self.assertIdentical(None, server.get_peer_cert_chain()) class ConnectionGetCipherListTests(TestCase): """ Tests for L{Connection.get_cipher_list}. """ def test_wrong_args(self): """ L{Connection.get_cipher_list} raises L{TypeError} if called with any arguments. """ connection = Connection(Context(TLSv1_METHOD), None) self.assertRaises(TypeError, connection.get_cipher_list, None) def test_result(self): """ L{Connection.get_cipher_list} returns a C{list} of C{str} giving the names of the ciphers which might be used. """ connection = Connection(Context(TLSv1_METHOD), None) ciphers = connection.get_cipher_list() self.assertTrue(isinstance(ciphers, list)) for cipher in ciphers: self.assertTrue(isinstance(cipher, str)) class ConnectionSendTests(TestCase, _LoopbackMixin): """ Tests for L{Connection.send} """ def test_wrong_args(self): """ When called with arguments other than a single string, L{Connection.send} raises L{TypeError}. """ connection = Connection(Context(TLSv1_METHOD), None) self.assertRaises(TypeError, connection.send) self.assertRaises(TypeError, connection.send, object()) self.assertRaises(TypeError, connection.send, "foo", "bar") def test_short_bytes(self): """ When passed a short byte string, L{Connection.send} transmits all of it and returns the number of bytes sent. """ server, client = self._loopback() count = server.send(b('xy')) self.assertEquals(count, 2) self.assertEquals(client.recv(2), b('xy')) try: memoryview except NameError: "cannot test sending memoryview without memoryview" else: def test_short_memoryview(self): """ When passed a memoryview onto a small number of bytes, L{Connection.send} transmits all of them and returns the number of bytes sent. """ server, client = self._loopback() count = server.send(memoryview(b('xy'))) self.assertEquals(count, 2) self.assertEquals(client.recv(2), b('xy')) class ConnectionSendallTests(TestCase, _LoopbackMixin): """ Tests for L{Connection.sendall}. """ def test_wrong_args(self): """ When called with arguments other than a single string, L{Connection.sendall} raises L{TypeError}. """ connection = Connection(Context(TLSv1_METHOD), None) self.assertRaises(TypeError, connection.sendall) self.assertRaises(TypeError, connection.sendall, object()) self.assertRaises(TypeError, connection.sendall, "foo", "bar") def test_short(self): """ L{Connection.sendall} transmits all of the bytes in the string passed to it. """ server, client = self._loopback() server.sendall(b('x')) self.assertEquals(client.recv(1), b('x')) try: memoryview except NameError: "cannot test sending memoryview without memoryview" else: def test_short_memoryview(self): """ When passed a memoryview onto a small number of bytes, L{Connection.sendall} transmits all of them. """ server, client = self._loopback() server.sendall(memoryview(b('x'))) self.assertEquals(client.recv(1), b('x')) def test_long(self): """ L{Connection.sendall} transmits all of the bytes in the string passed to it even if this requires multiple calls of an underlying write function. """ server, client = self._loopback() # Should be enough, underlying SSL_write should only do 16k at a time. # On Windows, after 32k of bytes the write will block (forever - because # no one is yet reading). message = b('x') * (1024 * 32 - 1) + b('y') server.sendall(message) accum = [] received = 0 while received < len(message): data = client.recv(1024) accum.append(data) received += len(data) self.assertEquals(message, b('').join(accum)) def test_closed(self): """ If the underlying socket is closed, L{Connection.sendall} propagates the write error from the low level write call. """ server, client = self._loopback() server.sock_shutdown(2) self.assertRaises(SysCallError, server.sendall, "hello, world") class ConnectionRenegotiateTests(TestCase, _LoopbackMixin): """ Tests for SSL renegotiation APIs. """ def test_renegotiate_wrong_args(self): """ L{Connection.renegotiate} raises L{TypeError} if called with any arguments. """ connection = Connection(Context(TLSv1_METHOD), None) self.assertRaises(TypeError, connection.renegotiate, None) def test_total_renegotiations_wrong_args(self): """ L{Connection.total_renegotiations} raises L{TypeError} if called with any arguments. """ connection = Connection(Context(TLSv1_METHOD), None) self.assertRaises(TypeError, connection.total_renegotiations, None) def test_total_renegotiations(self): """ L{Connection.total_renegotiations} returns C{0} before any renegotiations have happened. """ connection = Connection(Context(TLSv1_METHOD), None) self.assertEquals(connection.total_renegotiations(), 0) # def test_renegotiate(self): # """ # """ # server, client = self._loopback() # server.send("hello world") # self.assertEquals(client.recv(len("hello world")), "hello world") # self.assertEquals(server.total_renegotiations(), 0) # self.assertTrue(server.renegotiate()) # server.setblocking(False) # client.setblocking(False) # while server.renegotiate_pending(): # client.do_handshake() # server.do_handshake() # self.assertEquals(server.total_renegotiations(), 1) class ErrorTests(TestCase): """ Unit tests for L{OpenSSL.SSL.Error}. """ def test_type(self): """ L{Error} is an exception type. """ self.assertTrue(issubclass(Error, Exception)) self.assertEqual(Error.__name__, 'Error') class ConstantsTests(TestCase): """ Tests for the values of constants exposed in L{OpenSSL.SSL}. These are values defined by OpenSSL intended only to be used as flags to OpenSSL APIs. The only assertions it seems can be made about them is their values. """ # unittest.TestCase has no skip mechanism if OP_NO_QUERY_MTU is not None: def test_op_no_query_mtu(self): """ The value of L{OpenSSL.SSL.OP_NO_QUERY_MTU} is 0x1000, the value of I{SSL_OP_NO_QUERY_MTU} defined by I{openssl/ssl.h}. """ self.assertEqual(OP_NO_QUERY_MTU, 0x1000) else: "OP_NO_QUERY_MTU unavailable - OpenSSL version may be too old" if OP_COOKIE_EXCHANGE is not None: def test_op_cookie_exchange(self): """ The value of L{OpenSSL.SSL.OP_COOKIE_EXCHANGE} is 0x2000, the value of I{SSL_OP_COOKIE_EXCHANGE} defined by I{openssl/ssl.h}. """ self.assertEqual(OP_COOKIE_EXCHANGE, 0x2000) else: "OP_COOKIE_EXCHANGE unavailable - OpenSSL version may be too old" if OP_NO_TICKET is not None: def test_op_no_ticket(self): """ The value of L{OpenSSL.SSL.OP_NO_TICKET} is 0x4000, the value of I{SSL_OP_NO_TICKET} defined by I{openssl/ssl.h}. """ self.assertEqual(OP_NO_TICKET, 0x4000) else: "OP_NO_TICKET unavailable - OpenSSL version may be too old" class MemoryBIOTests(TestCase, _LoopbackMixin): """ Tests for L{OpenSSL.SSL.Connection} using a memory BIO. """ def _server(self, sock): """ Create a new server-side SSL L{Connection} object wrapped around C{sock}. """ # Create the server side Connection. This is mostly setup boilerplate # - use TLSv1, use a particular certificate, etc. server_ctx = Context(TLSv1_METHOD) server_ctx.set_options(OP_NO_SSLv2 | OP_NO_SSLv3 | OP_SINGLE_DH_USE ) server_ctx.set_verify(VERIFY_PEER|VERIFY_FAIL_IF_NO_PEER_CERT|VERIFY_CLIENT_ONCE, verify_cb) server_store = server_ctx.get_cert_store() server_ctx.use_privatekey(load_privatekey(FILETYPE_PEM, server_key_pem)) server_ctx.use_certificate(load_certificate(FILETYPE_PEM, server_cert_pem)) server_ctx.check_privatekey() server_store.add_cert(load_certificate(FILETYPE_PEM, root_cert_pem)) # Here the Connection is actually created. If None is passed as the 2nd # parameter, it indicates a memory BIO should be created. server_conn = Connection(server_ctx, sock) server_conn.set_accept_state() return server_conn def _client(self, sock): """ Create a new client-side SSL L{Connection} object wrapped around C{sock}. """ # Now create the client side Connection. Similar boilerplate to the # above. client_ctx = Context(TLSv1_METHOD) client_ctx.set_options(OP_NO_SSLv2 | OP_NO_SSLv3 | OP_SINGLE_DH_USE ) client_ctx.set_verify(VERIFY_PEER|VERIFY_FAIL_IF_NO_PEER_CERT|VERIFY_CLIENT_ONCE, verify_cb) client_store = client_ctx.get_cert_store() client_ctx.use_privatekey(load_privatekey(FILETYPE_PEM, client_key_pem)) client_ctx.use_certificate(load_certificate(FILETYPE_PEM, client_cert_pem)) client_ctx.check_privatekey() client_store.add_cert(load_certificate(FILETYPE_PEM, root_cert_pem)) client_conn = Connection(client_ctx, sock) client_conn.set_connect_state() return client_conn def test_memoryConnect(self): """ Two L{Connection}s which use memory BIOs can be manually connected by reading from the output of each and writing those bytes to the input of the other and in this way establish a connection and exchange application-level bytes with each other. """ server_conn = self._server(None) client_conn = self._client(None) # There should be no key or nonces yet. self.assertIdentical(server_conn.master_key(), None) self.assertIdentical(server_conn.client_random(), None) self.assertIdentical(server_conn.server_random(), None) # First, the handshake needs to happen. We'll deliver bytes back and # forth between the client and server until neither of them feels like # speaking any more. self.assertIdentical( self._interactInMemory(client_conn, server_conn), None) # Now that the handshake is done, there should be a key and nonces. self.assertNotIdentical(server_conn.master_key(), None) self.assertNotIdentical(server_conn.client_random(), None) self.assertNotIdentical(server_conn.server_random(), None) self.assertEquals(server_conn.client_random(), client_conn.client_random()) self.assertEquals(server_conn.server_random(), client_conn.server_random()) self.assertNotEquals(server_conn.client_random(), server_conn.server_random()) self.assertNotEquals(client_conn.client_random(), client_conn.server_random()) # Here are the bytes we'll try to send. important_message = b('One if by land, two if by sea.') server_conn.write(important_message) self.assertEquals( self._interactInMemory(client_conn, server_conn), (client_conn, important_message)) client_conn.write(important_message[::-1]) self.assertEquals( self._interactInMemory(client_conn, server_conn), (server_conn, important_message[::-1])) def test_socketConnect(self): """ Just like L{test_memoryConnect} but with an actual socket. This is primarily to rule out the memory BIO code as the source of any problems encountered while passing data over a L{Connection} (if this test fails, there must be a problem outside the memory BIO code, as no memory BIO is involved here). Even though this isn't a memory BIO test, it's convenient to have it here. """ server_conn, client_conn = self._loopback() important_message = b("Help me Obi Wan Kenobi, you're my only hope.") client_conn.send(important_message) msg = server_conn.recv(1024) self.assertEqual(msg, important_message) # Again in the other direction, just for fun. important_message = important_message[::-1] server_conn.send(important_message) msg = client_conn.recv(1024) self.assertEqual(msg, important_message) def test_socketOverridesMemory(self): """ Test that L{OpenSSL.SSL.bio_read} and L{OpenSSL.SSL.bio_write} don't work on L{OpenSSL.SSL.Connection}() that use sockets. """ context = Context(SSLv3_METHOD) client = socket() clientSSL = Connection(context, client) self.assertRaises( TypeError, clientSSL.bio_read, 100) self.assertRaises( TypeError, clientSSL.bio_write, "foo") self.assertRaises( TypeError, clientSSL.bio_shutdown ) def test_outgoingOverflow(self): """ If more bytes than can be written to the memory BIO are passed to L{Connection.send} at once, the number of bytes which were written is returned and that many bytes from the beginning of the input can be read from the other end of the connection. """ server = self._server(None) client = self._client(None) self._interactInMemory(client, server) size = 2 ** 15 sent = client.send("x" * size) # Sanity check. We're trying to test what happens when the entire # input can't be sent. If the entire input was sent, this test is # meaningless. self.assertTrue(sent < size) receiver, received = self._interactInMemory(client, server) self.assertIdentical(receiver, server) # We can rely on all of these bytes being received at once because # _loopback passes 2 ** 16 to recv - more than 2 ** 15. self.assertEquals(len(received), sent) def test_shutdown(self): """ L{Connection.bio_shutdown} signals the end of the data stream from which the L{Connection} reads. """ server = self._server(None) server.bio_shutdown() e = self.assertRaises(Error, server.recv, 1024) # We don't want WantReadError or ZeroReturnError or anything - it's a # handshake failure. self.assertEquals(e.__class__, Error) def _check_client_ca_list(self, func): """ Verify the return value of the C{get_client_ca_list} method for server and client connections. @param func: A function which will be called with the server context before the client and server are connected to each other. This function should specify a list of CAs for the server to send to the client and return that same list. The list will be used to verify that C{get_client_ca_list} returns the proper value at various times. """ server = self._server(None) client = self._client(None) self.assertEqual(client.get_client_ca_list(), []) self.assertEqual(server.get_client_ca_list(), []) ctx = server.get_context() expected = func(ctx) self.assertEqual(client.get_client_ca_list(), []) self.assertEqual(server.get_client_ca_list(), expected) self._interactInMemory(client, server) self.assertEqual(client.get_client_ca_list(), expected) self.assertEqual(server.get_client_ca_list(), expected) def test_set_client_ca_list_errors(self): """ L{Context.set_client_ca_list} raises a L{TypeError} if called with a non-list or a list that contains objects other than X509Names. """ ctx = Context(TLSv1_METHOD) self.assertRaises(TypeError, ctx.set_client_ca_list, "spam") self.assertRaises(TypeError, ctx.set_client_ca_list, ["spam"]) self.assertIdentical(ctx.set_client_ca_list([]), None) def test_set_empty_ca_list(self): """ If passed an empty list, L{Context.set_client_ca_list} configures the context to send no CA names to the client and, on both the server and client sides, L{Connection.get_client_ca_list} returns an empty list after the connection is set up. """ def no_ca(ctx): ctx.set_client_ca_list([]) return [] self._check_client_ca_list(no_ca) def test_set_one_ca_list(self): """ If passed a list containing a single X509Name, L{Context.set_client_ca_list} configures the context to send that CA name to the client and, on both the server and client sides, L{Connection.get_client_ca_list} returns a list containing that X509Name after the connection is set up. """ cacert = load_certificate(FILETYPE_PEM, root_cert_pem) cadesc = cacert.get_subject() def single_ca(ctx): ctx.set_client_ca_list([cadesc]) return [cadesc] self._check_client_ca_list(single_ca) def test_set_multiple_ca_list(self): """ If passed a list containing multiple X509Name objects, L{Context.set_client_ca_list} configures the context to send those CA names to the client and, on both the server and client sides, L{Connection.get_client_ca_list} returns a list containing those X509Names after the connection is set up. """ secert = load_certificate(FILETYPE_PEM, server_cert_pem) clcert = load_certificate(FILETYPE_PEM, server_cert_pem) sedesc = secert.get_subject() cldesc = clcert.get_subject() def multiple_ca(ctx): L = [sedesc, cldesc] ctx.set_client_ca_list(L) return L self._check_client_ca_list(multiple_ca) def test_reset_ca_list(self): """ If called multiple times, only the X509Names passed to the final call of L{Context.set_client_ca_list} are used to configure the CA names sent to the client. """ cacert = load_certificate(FILETYPE_PEM, root_cert_pem) secert = load_certificate(FILETYPE_PEM, server_cert_pem) clcert = load_certificate(FILETYPE_PEM, server_cert_pem) cadesc = cacert.get_subject() sedesc = secert.get_subject() cldesc = clcert.get_subject() def changed_ca(ctx): ctx.set_client_ca_list([sedesc, cldesc]) ctx.set_client_ca_list([cadesc]) return [cadesc] self._check_client_ca_list(changed_ca) def test_mutated_ca_list(self): """ If the list passed to L{Context.set_client_ca_list} is mutated afterwards, this does not affect the list of CA names sent to the client. """ cacert = load_certificate(FILETYPE_PEM, root_cert_pem) secert = load_certificate(FILETYPE_PEM, server_cert_pem) cadesc = cacert.get_subject() sedesc = secert.get_subject() def mutated_ca(ctx): L = [cadesc] ctx.set_client_ca_list([cadesc]) L.append(sedesc) return [cadesc] self._check_client_ca_list(mutated_ca) def test_add_client_ca_errors(self): """ L{Context.add_client_ca} raises L{TypeError} if called with a non-X509 object or with a number of arguments other than one. """ ctx = Context(TLSv1_METHOD) cacert = load_certificate(FILETYPE_PEM, root_cert_pem) self.assertRaises(TypeError, ctx.add_client_ca) self.assertRaises(TypeError, ctx.add_client_ca, "spam") self.assertRaises(TypeError, ctx.add_client_ca, cacert, cacert) def test_one_add_client_ca(self): """ A certificate's subject can be added as a CA to be sent to the client with L{Context.add_client_ca}. """ cacert = load_certificate(FILETYPE_PEM, root_cert_pem) cadesc = cacert.get_subject() def single_ca(ctx): ctx.add_client_ca(cacert) return [cadesc] self._check_client_ca_list(single_ca) def test_multiple_add_client_ca(self): """ Multiple CA names can be sent to the client by calling L{Context.add_client_ca} with multiple X509 objects. """ cacert = load_certificate(FILETYPE_PEM, root_cert_pem) secert = load_certificate(FILETYPE_PEM, server_cert_pem) cadesc = cacert.get_subject() sedesc = secert.get_subject() def multiple_ca(ctx): ctx.add_client_ca(cacert) ctx.add_client_ca(secert) return [cadesc, sedesc] self._check_client_ca_list(multiple_ca) def test_set_and_add_client_ca(self): """ A call to L{Context.set_client_ca_list} followed by a call to L{Context.add_client_ca} results in using the CA names from the first call and the CA name from the second call. """ cacert = load_certificate(FILETYPE_PEM, root_cert_pem) secert = load_certificate(FILETYPE_PEM, server_cert_pem) clcert = load_certificate(FILETYPE_PEM, server_cert_pem) cadesc = cacert.get_subject() sedesc = secert.get_subject() cldesc = clcert.get_subject() def mixed_set_add_ca(ctx): ctx.set_client_ca_list([cadesc, sedesc]) ctx.add_client_ca(clcert) return [cadesc, sedesc, cldesc] self._check_client_ca_list(mixed_set_add_ca) def test_set_after_add_client_ca(self): """ A call to L{Context.set_client_ca_list} after a call to L{Context.add_client_ca} replaces the CA name specified by the former call with the names specified by the latter cal. """ cacert = load_certificate(FILETYPE_PEM, root_cert_pem) secert = load_certificate(FILETYPE_PEM, server_cert_pem) clcert = load_certificate(FILETYPE_PEM, server_cert_pem) cadesc = cacert.get_subject() sedesc = secert.get_subject() def set_replaces_add_ca(ctx): ctx.add_client_ca(clcert) ctx.set_client_ca_list([cadesc]) ctx.add_client_ca(secert) return [cadesc, sedesc] self._check_client_ca_list(set_replaces_add_ca) class InfoConstantTests(TestCase): """ Tests for assorted constants exposed for use in info callbacks. """ def test_integers(self): """ All of the info constants are integers. This is a very weak test. It would be nice to have one that actually verifies that as certain info events happen, the value passed to the info callback matches up with the constant exposed by OpenSSL.SSL. """ for const in [ SSL_ST_CONNECT, SSL_ST_ACCEPT, SSL_ST_MASK, SSL_ST_INIT, SSL_ST_BEFORE, SSL_ST_OK, SSL_ST_RENEGOTIATE, SSL_CB_LOOP, SSL_CB_EXIT, SSL_CB_READ, SSL_CB_WRITE, SSL_CB_ALERT, SSL_CB_READ_ALERT, SSL_CB_WRITE_ALERT, SSL_CB_ACCEPT_LOOP, SSL_CB_ACCEPT_EXIT, SSL_CB_CONNECT_LOOP, SSL_CB_CONNECT_EXIT, SSL_CB_HANDSHAKE_START, SSL_CB_HANDSHAKE_DONE]: self.assertTrue(isinstance(const, int)) if __name__ == '__main__': main()